DIGITAL PROCESS INDICATOR

PM5650-HH

INSTRUCTION MANUAL 99A

INTRODUCTION

The model PM5650-HH is a high quality, free to scale, digital read-out with two independent relay contacts which can be set as alarm to any required value. Depending on the option the unit accepts linear 4-20 mA or 0-20 mA signals. It provides a 24 V DC power supply for a transmitter at the same time.

CALIBRATION INSTRUCTIONS

In order to calibrate the Model PM5650-HH, a current ($0 / 4-20 \mathrm{~mA} \mathrm{DC}$) simulator is required.
(Model TL245 is recommended as a fast, simple calibration tool.)
Remove the front bezel and the two cover plates. Place the cover plates on a soft, non-scratching surface. Gently pull the meter assembly out of its housing.

1. Connect the simulator to the input (refer to Fig.2; - to 5 and + to 6)
2. Connect the power supply 230 or 115 V (check instrument label!) (Fig.2; no.1 and 2)

WARNING: BEWARE OF SHOCK WHEN POWER-SUPPLY IS CONNECTED !!

3. Use switch S2 to determine the Offset or Zero. Only switches \# 1, 2 and 3 are used for this function. Set the Zero to obtain the correct range using the following table:

readout	switch position
$0-500$	\#1, \#2, \#3 'OFF'
$500-1000$	\#3 'ON' - \#1 \& \#2 'OFF'
$1000-1500$	$\# 2 ~ ' O N ' ~-~ \# 1 ~ \& ~ \# 3 ~ ' O F F ' ~$
$1500-1999$	$\# 1$ 'ON' - \#2 \& \#3 'OFF'

Simulate a 4 mA input.
Adjust the ZERO potentiometer "ZE" to obtain the exact reading desired.
4. To select the Zero or Offset POSITIVE (+) or NEGATIVE (-) sign, use S3. The 'A' position will give a positive (+) sign; the ' 1 ' position will display a negative (-) sign.
5. Adjust the simulator to an output of 20 mA . Use S 1 to determine the Span Range. Set the Span to the desired range using the following table:

span range	switch position
$0-500$	$\# 4$
$500-1000$	$\# 3$
$1000-1500$	$\# 2$
$1500-1999$	$\# 1$

Adjust the SPAN potentiometer "SP" to obtain the exact reading desired.

Note that decimal point is not shown is this table. For a range of $0-120.0$ you must put S1 in position \#2.
6. Use S2 to select the position of the Decimal Point. Only switches \#4, 5 and 6 are used.

decimal location	switch position
000.0	$\# 4 ~ ' O N ' ~-~ \# 5 ~ \& ~ \# 6 ~ ' O F F ' ~$
00.00	$\# 5$
$0.0 N ' ~ \# 4 ~ \& ~ \# 6 ~ ' O F F ' ~$	
0.000	$\# 6 ~ ' O N ' ~ \# 4 ~ \& ~ ' O F F ' ~$

SETTING THE ALARM POINT(S)

7. Push the button A on the front left side and adjust the read-out to the first required setpoint with P1.
8. Use potentiometer H 1 to set the hysteresis. Turn counter clockwise for the smallest hysteresis.
9. Push the button B on the front right side and adjust the read-out to the second required setpoint with P2.
10. Use potentiometer H 2 to set the hysteresis. Turn counter clockwise for the smallest hysteresis.

NOTE: THE RELAY CONTACTS ARE ALARM CONTACTS ONLY AND NOT SUITABLE TO SWITCH HIGH RATINGS. (MAXIMUM 100W NON-INDUCTIVE LOAD)
11. Adjust the simulator to provide an input of 0 mA or 4 mA . If the displayed value is incorrect, repeat the calibration procedure. Repeat for a simulator value of 20 mA .

The Model PM5650-HH is now calibrated. Replace the front cover plates and bezel.

FIG. 2 Connection

